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Abstract. When a wind turbine is yawed, the shape of the wake changes and a curled wake profile is generated. The curled

wake has drawn a lot of interest because of its aerodynamic complexity and applicability to wind farm controls. The main

mechanism for the creation of the curled wake has been identified in the literature as a collection of vortices that are shed

from the rotor plane when the turbine is yawed. This work extends that idea by using aerodynamic concepts to develop a

control-oriented model for the curled wake based on approximations to the Navier-Stokes equations. The model is tested and5

compared to large-eddy simulations using actuator disk and line models. The model is able to capture the curling mechanism

for a turbine under uniform inflow and in the case of a neutral atmospheric boundary layer. The model is then tested inside

the FLOw Redirection and Induction in Steady State framework and provides excellent agreement with power predictions for

cases with two and three turbines in a row.

Copyright statement.10

1 Introduction

A curled wake is a phenomenon observed in the wake of a wind turbine when the turbine is yawed relative to the free-stream

velocity. When a wind turbine is yawed, the wake is not only deflected in a direction opposite to the yaw angle, but its shape

changes. The mechanism behind this effect has drawn attention, not only from fluid dynamicists because of the interesting

physics phenomena happening in the wake, but also from the controls community who intends to use it to control wind farm15

flows (Fleming et al., 2017).

It has been shown that wake steering (redirection of the wake through yaw misalignment) can lead to an increase in power

production of wind turbine arrays (Adaramola and Krogstad, 2011; Park et al., 2013; Gebraad et al., 2016). Previous studies

have used large-eddy simulations (LES) and analytical tools to show the effects of yawing in the redirection of the wake

(Jiménez et al., 2010; Bastankhah and Porté-Agel, 2016; Shapiro et al., 2018). Wind tunnel experiments have also been used to20

study the wake of a wind turbine in yaw (Medici and Alfredsson, 2006; Bartl et al., 2018). The curled wake mechanism, in the

context of wind turbine wakes, was first identified by Howland et al. (2016) during a porous disk experiment, and in LES using

an actuator disk model (ADM) and actuator line model (ALM). This mechanism was described by a pair of counter-rotating
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vortices that are shed from the top and bottom of the rotor when the rotor is yawed. Further, these vortices move the wake

to the side and create a curled wake shape. This mechanism was later confirmed and elaborated by the work of Bastankhah

and Porté-Agel (2016) by performing experiments using particle image velocimetry of a scaled wind turbine and by doing a

theoretical analysis using potential flow theory. Shapiro et al. show that the vorticity distribution shed from the rotor because

of yaw has an elliptic shape as opposed to only a pair of counter-rotating vortices (Shapiro et al., 2018). The curled wake has5

also been observed in LES with different atmospheric stabilities (Vollmer et al., 2016). Berdowski et al. (2018) were able to

reproduce curled wake profiles by using a vortex method. Fleming et al. (2017) show that the generated vortices affect the

performance of wake steering and motivate the development of engineering models (like the one in this paper), which include

wake curling physics. Controllers based on such models would pursue different, and likely more effective, wind farm control

strategies.10

In this work, we describe the aerodynamics of the curled wake, and propose a new, simple and computationally efficient

model for wake deficit, based on a linearized version of the Navier-Stokes equations with approximations. The model is tested

and compared to LES using actuator disk and line models.

2 Aerodynamics of the Curled Wake: A Control-Oriented Model

Here, we develop a simplified model of the wake deficit considering the aerodynamics of the curled wake. We start by writing15

the Reynolds-averaged Navier-Stokes streamwise momentum equation for an incompressible flow:

u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
+ =−1

ρ

∂p

∂x
+ νeff

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (1)

where u is the streamwise velocity, v is the spanwise velocity, and w is the wall-normal velocity, p is the pressure, ρ is the fluid

density, and νeff is the effective (turbulent and molecular) viscosity. The flow field is now decomposed into a base solution and

a perturbation about this solution. The base solution includes what we consider to be the main effects that convect the wake,20

including, but not limited to:

1. The streamwise velocity profile

2. The rotational velocity from the shed vortices caused by yawing

3. The rotational velocity due to the blade rotation.

The velocity components can be expanded as:25

u= U +u′, v = V + v′, w =W +w′, (2)

where U , V , andW are the streamwise, spanwise, and wall-normal velocity components from the base solution, and u′, v′, and

w′ are the perturbation velocities. We use a reference frame where x is the streamwise direction, y is the spanwise direction,

and z is the wall-normal direction. Assuming that the inflow is fully developed, the base solution is only a function of the

spanwise and wall normal directions.30
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Linearizing the Euler momentum equation for the streamwise component leads to:

U
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∂ (U +u′)
∂y

+W
∂ (U +u′)

∂z
=−1

ρ

∂p
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+ νeff
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∂2u′

∂x2
+
∂2U +u′

∂y2
+
∂2U +u′

∂z2

)
. (3)

For this initial test of the model, the pressure gradient is assumed to be zero, which is a valid approximation in the far wake

but not necessarily near the rotor. Also, we assume that the streamwise velocity, U , is not a function of the streamwise (x) and

spanwise (y) coordinates. We also assume that the viscous force from the boundary layer is balanced by its pressure gradient.5

With these simplifications, we are left with the equation:

U
∂u′

∂x
+V

∂u′

∂y
+W

∂ (U +u′)
∂z

= νeff

(
∂2u′

∂x2
+
∂2u′

∂y2
+
∂2u′

∂z2

)
. (4)

Equation 4 describes the downstream evolution of the wake deficit, u′. We note that the only velocity component being solved

is the streamwise component, u′. The base solution for the flow (U,V,W ) includes the spanwise effects from different features,

such as rotation and curl. Because these effects are the main drivers for wake deformation, the spanwise perturbations, v′ and10

w′, are assumed to be zero. This assumption reduces the model to a single partial differential equation. Equation 4 will be

solved numerically in the next section. The model does not use the continuity equation so mass conservation is not strictly

enforced for the perturbation velocities.

2.1 Curled Wake

The curled wake effect is added to the model by adding a distribution of counter-rotating vortices to the base flow solution.15

Figure 1 shows a schematic of the rotor and a collection of vortices being shed at the rotor plane. The superposition of all the

vortices leads to a spanwise velocity distribution that creates the curled wake shape. Each vortex is described as a Lamb-Oseen

vortex with a tangential velocity distribution given by:

ut =
Γ

2πr
(
1− exp

(
−r2/σ2

))
, (5)

where ut is the tangential component of the velocity, r is the distance from the vortex core, Γ is the circulation strength, and σ20

determines the width of the vortex core. The circulation related to the strength of each vortex is still unknown. We assume that

the problem is symmetric and that all the circulation leaves the disk through the shed vortices. In the current implementation,

the vortices are assumed not to decay as they are convected downstream; however, it would be possible to incorporate this

effect into the model. It is important to note that the vorticity shed has an elliptic distribution according to the shape of the rotor

(Shapiro et al., 2018). The circulation is then: Γ = ρDU∞FL, where ρ is the fluid density, D is the rotor diameter, U∞ is the25

inflow velocity at hub height, and FL is the force perpendicular to the inflow wind. The force component perpendicular to the

inflow wind generates circulation. If we use the definition of the thrust coefficient, it is now possible to redefine the strength of

the circulation as a function of thrust coefficient and yaw angle (Shapiro et al., 2018) as:

Γ =
π

8
ρDU∞CT sinγ cos2 γ, (6)
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Figure 1. Diagram showing a collection of vortices shed from the rotor plane with the corresponding downstream distribution of spanwise

velocities due to the superposition of the vortices.

where CT is the thrust coefficient for the given inflow velocity, and γ is the yaw angle. The discrete elliptic distribution of shed

vortices added to match the shape of the disk is:

V =
N∑

i=1

yi Γi

2π (y2
i + z2

i )
(
1− exp

(
−(y2

i + z2
i )/σ2

))
, (7)

W =
∑

i=1

N
zi Γi

2π (y2
i + z2

i )
(
1− exp

(
−(y2

i + z2
i )/σ2

))
, (8)5

where i is the index denoting each of the vortices distributed on a line between the top and bottom of the rotor diameter, N is

the total number of vortices, and the coordinates yi and zi are centered at the location of the shed vortex. The size of the vortex

core is set to σ =D/5. The choice of σ intends to represent a realistic vortex core size for an elliptic distribution. This value

represents σ/D ∼ 0.2, which is on the order of the optimal size for flow over an airfoil (Martínez-Tossas et al., 2017). It is

possible to use other values, however, in the simulations presented, this value is a good compromise between a physical width10

and numerical stability. The strength of each vortex is associated with the elliptical distribution by:

Γi =−4Γ0
z2

i

ND2
√

1− (2zi/D)2
, (9)

where Γ0 = 4/πΓ is used to ensure that the total amount of circulation Γ is conserved. This means that each vortex has a

unique amount of circulation. When the distribution of circulation in Equation 9 is integrated, the total circulation is obtained.
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The results useN =200 discrete vortices, which has shown that this has little effect on the solutions, and values aroundN = 20

provide the same results. Noted that, when using just the two tip vortices in the top and bottom of the rotor, the shape of the

curled wake does not match the simulation results. For this reason, an elliptic distribution of shed vorticity, which matches the

shape of the rotor, should be used.

2.2 Wake Rotation5

It is important to include wake rotation in the model, because the rotation will move the wake in a preferred direction. Wake

rotation is taken into account by adding a tangential velocity distribution that is caused by the rotation inside the rotor area.

The tangential induction factor is defined as:

a′ =
(a− a2)R2

r2λ2
(10)

where a is the induction factor based on the thrust coefficient from standard actuator disk theory, R is the rotor radius, r is the10

radial distance from the center of the rotor, and λ is the tip speed ratio (Burton et al., 2002). From this equation, the tangential

component of the velocity ut is a singular vortex with 1/r behavior:

ut = 2a′λU∞r/R=
2(a− a2)U∞R

λr
. (11)

A Lamb-Oseen vortex is used to desingularize the behavior near the center of the rotor. The circulation strength for the wake

rotation vortex based on Equation 10 is now:15

Γwr = 2π (a− a2)U∞D/λ. (12)

We assume that the wake rotation vortex does not decay or deform as it moves downtstream. This is not necessarily true,

as turbulence mixing will decrease the wake rotation. However, the present model does not diffuse the spanwise velocity

components and some of the errors in the model can be attributed to this. The current implementation uses a Lamb-Oseen

vortex with a core size σ =D/5 to eliminate numerical instabilities caused by high velocities near the vortex core, but other20

values could be used.

2.3 Atmospheric Boundary Layer

The atmospheric boundary layer can be specified as part of the background flow. A profile including streamwise and spanwise

velocity components can be specified. The streamwise profile is described by using a power law:

U = Uh

(
z

zh

)α
, (13)25

where Uh is the velocity at hub height, zh is the hub height, and α is the shear exponent. Also, it is possible to add a profile for

the spanwise velocity component to take veer into account.
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2.4 Turbulence Modeling

The turbulent viscosity in Equation 4 is determined by using a mixing length model. The turbulent viscosity in the atmospheric

boundary layer is dependent on a mixing length, `m, and a velocity gradient (Pope, 2001). The mixing length for flows in the

atmospheric boundary layer is defined by:

`m = κz
1

(1 +κz/λ)
(14)5

where κ is the von-Kàrmàn constant, z is the distance from the wall, and λ= 15m is the value reached by `m in the free

atmosphere (Blackadar, 1962; Sun, 2011). Now the turbulent viscosity is given by:

νT = `2m

∣∣∣∣
du

dz

∣∣∣∣ , (15)

where du
dz is the streamwise velocity gradient in the wall-normal direction. Figure 2 shows a profile of turbulent viscosity as a

function of height based on a power law velocity profile with shear exponent α= 0.2.
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Figure 2. Turbulent viscosity as a function of height for a neutral atmospheric boundary layer based on a power law with shear exponent

α= 0.2.
10

2.5 Ground Effect

The presence of the ground will have an effect on the shed vortices. The ground effect is incorporated by applying a symmetry

boundary condition at the ground (Bastankhah and Porté-Agel, 2016). This is done by using Equations 7 and 8, with the y- and

z-coordinates placed below the ground and inverting the sign of the circulation. This condition has a more dominant effect on

the vortices close to the ground as they interact with the boundary.15
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2.6 Superposition of Solutions

Superposing all the effects mentioned earlier leads to a base flow that includes all the features presented. The linearized

equation allows us to add features by superposing them onto the velocity components. Notice that in this implementation of the

model, the base solutions is a function of only the spanwise directions, y and z, and there is no dependency on the streamwise

coordinate, x. However, dependency on the streamwise direction could also be included in the base solution. The vortices do5

induce motion on each other and the spanwise component of the momentum equation should be used. However, these motions

are smaller than the streamwise motions and solving one equation as opposed to three reduces computational cost significantly.

2.7 Initial and Boundary Conditions

The initial condition for the perturbation velocity, u′, is specified as the yawed disk projected onto a plane normal to the

streamwise direction. This shape represents the shape of the wake downstream right after the rotor. The exact shape of the10

wake near the rotor is much more complicated, and is not taken into account in the present model. The initial profile is set as a

uniform distribution of wake deficit (u′ =−2aU∞) inside the rotor projected area, where a is the induction. This step function

is smoothened using a Gaussian filter to avoid numerical oscillations in the spanwise directions. The lateral boundaries are set

to zero perturbation (u′ = 0) because there is no wake in that region.

3 Numerical Solution15

It is now possible to discretize Equation 4 and solve it numerically. Because the time derivative and pressure-gradient terms

were dropped, the equation is parabolic, and it can be solved as a marching problem. The equation is solved by starting from

an initial condition at the rotor plane and marching downstream. This is done by using a first-order upwind discretization for

the streamwise derivative and second-order finite differencing for the spanwise derivatives. The discrete equation is now:

u′[i+1,j,k] = u′[i,j,k]−
∆x

(U +u′)[i,j,k]

(
W[i,j,k]

(U +u′)[i,j,k+1]− (U +u′)[i,j,k−1]

∆z
+

V[i,j,k]

u′[i,j+1,k]−u′[i,j−1,k]

∆y
− νeff∇2u′[i,j,k]

)
,

(16)20

where i, j, and k are the indices denoting the grid points in the x, y, and z coordinates, ∇2 are the wall-normal and spanwise

components in the Laplacian operator and νeff is the effective viscosity. The resolution used is on the order of 30-40 grid

points per diameter. The computational expense of the algorithm without any optimization is small (∼1-3 s) and can be used

to generate curled wake profiles quickly.

3.1 Numerical Stability25

The proposed numerical method uses a forward-time, centered-space method (Hoffman and Frankel, 2001). This algorithm is

explicit, meaning that it can become unstable for certain conditions. Using Equation 16, we can establish the numerical criteria
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for stability from the forward-time, centered-space method (Hoffman and Frankel, 2001). Equation 17 shows a guideline for

the stability requirement of the algorithm:
(

∆x
∆y

)2(
W

U

)2

≤ 2
∆x
∆y2

νeff

U
≤ 1 (17)

This stability criterion is based on a two-dimensional equation and the equation we are solving is three dimensional. However,

after testing various conditions, this criterion served as a good guideline for the three-dimensional version of the equation.5

After some algebraic manipulation, it is possible to show that the maximum grid spacing in the streamwise direction, ∆x, is

independent of the spanwise grid resolution. Equation 17 can be written as:

∆x≤ 2νeff
U

W 2
, ∆y ≥

√
2νeff ∆x

U
(18)

After testing the model with several grid spacings, it was found that a resolution on the order of D/∆∼ 30− 40 provided

converged results for the model without numerical oscillations.10

4 Comparison Between the Model and Large-Eddy Simulations

In this section, we compare the proposed model to LES with an actuator disk/line model. Different simulations are used to test

the proposed model: 1) a simulation of an isolated turbine using the ADM under uniform inflow, 2) a simulation of an isolated

turbine using the ALM under uniform inflow, and 3) a simulation of a turbine inside the atmospheric boundary layer under

neutral stability conditions.15

4.1 Actuator Disk/Line Model under Uniform Inflow

Here, we compare the results from the model to LES of a wind turbine under uniform inflow of a turbine using an actuator

disk/line model under uniform inflow from Howland et al. (2016). The yaw angle for these simulations is γ = 30o. First, the

model is compared to a simulation using an actuator disk without rotation. Figure 3 shows downstream planes with contours of

streamwise velocity normalized by the inflow velocity, for the case of an ADM without rotation (thrust only). The streamlines20

are based on the cross-stream components of velocity. The overall shape of the curled wake is well-captured by the model.

The overall streamline shapes between the LES and proposed wake model are similar. The pair of counter-rotating vortices

are clearly visible in both cases; however, the LES computes streamlines with a more complex shape than the simpler model

is capable of capturing. The resulting effect is that, in both cases, the wake deficit cross sections are deformed and curled in a

similar fashion. The model does not contain the tower, which is present in the simulation; however, this has a small effect on25

the wake.

Figure 4 shows downstream velocity contours for the case of a LES using an actuator line model under uniform inflow

(Howland et al., 2016) and the proposed model including curl and rotation. Again, the streamlines are similar in both cases,

but the LES produces more complex patterns. Further, the resultant wake deficit deformation is also similar in both cases, with

more deficit remaining at the top of the wake. In this case, asymmetry is observed with respect to the centerline across the30
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Figure 3. Comparison between a large-eddy simulation (LES) using an actuator disk model without rotation under uniform inflow from

Howland et al. (2016) (top) and the proposed model (bottom).

y-axis. This asymmetry is caused by the wake rotation induced by the torque applied to the fluid by the rotor. Interestingly,

the combination of curl and rotation pushes most of the deficit in a preferred direction. In this case, it is pushed upward in the

positive z and negative y directions. This insight can be used to steer the wake accordingly. We also observe that in the LES,

the wake diffuses faster than in the model. This is because the model does not take yet into account the turbulence generated

by the wake.5

Figure 5 shows the axial velocity along a horizontal line at hub height for different downstream locations from the simulations

in Figures 3 and 4. There is good agreement between the simulations and the model (in general), although some differences

can be observed. Near the edges of the wake there is an acceleration in the LES, which is caused by the blockage effect, and the

model is not able to capture this. In the case of the ALM, the main difference can be attributed to the different initial condition.

The model assumes a step function, which is different from the wake resolved by the LES. However, the general shape of the10

wake and its deviation to the sides, is well- captured by the model.
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Figure 4. Comparison between a large-eddy simulation using an actuator line model under uniform inflow from Howland et al. (2016) (top)

and the proposed model (bottom).

5 Large-Eddy Simulations using the Actuator Line Model in the Atmospheric Boundary Layer

The framework presented can easily be extended by adding more features. As an example, we present a comparison of the

model with a LES of a wind turbine inside a neutral atmospheric boundary layer with a yaw angle, γ = 20o. The simulation

was performed using the Simulator fOr Wind Farm Applications (SOWFA) from the National Renewable Energy Laboratory

(Churchfield and Lee, 2012). To add the effects of the atmosphere to the model, a vertical profile of velocity in the streamwise5

direction is added to the base solution. Also, a linear spanwise velocity component is added to the base solution to take veer

into account. The veer profile was chosen as a linear profile that matched the inflow from the LES results. Figure 6 shows the

mean streamwise velocity contours for the LES of a wind turbine inside a neutral atmospheric boundary layer and results from

the model. In general, there is good agreement between the model and the simulation. We can see that the main difference

comes from the wake in the LES diffusing more than in the model. This is expected because the turbulence model does not10

take into account the turbulence generated by the turbine wake, only the turbulence caused by the velocity gradients in the

atmospheric boundary layer. There are also differences resulting from the lateral motion of the vortices. The present model

does not take into account the convection of the vortices. This is shown in Figure 6, where the top and bottom vortices stay
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Figure 5. Comparison between a large-eddy simulation using an actuator disk model (top) and actuator line model (bottom) under uniform

inflow from Howland et al. (2016) and the proposed model.

at the same place when using the model. In reality, these vortices are convected to the sides, as shown in the LES. Figure 7

presents velocity along a line at hub height comparing the model and large-eddy simulations. We observe good agreement in

terms of the wake shape and how it moves and curls. There are differences present, which we attribute to the simplifications of

the proposed model.

6 Controls-Oriented Modeling5

We now test the proposed model into the FLOw Redirection and Induction in Steady State (FLORIS) framework (Gebraad

et al., 2016; Annoni et al., 2018). We compare the new curled wake model to the two-dimensional Gaussian steering model from

Bastankhah and Porté-Agel (2016). In the Gaussian steering model (Bastankhah and Porté-Agel, 2016), the wake deflection

due to yaw misalignment of turbines is defined by doing budget analysis on the Reynolds- averaged Navier-Stokes equations.

In the curled wake model, the wake steering is computed by solving a linearized version of the Navier-Stokes equations.10

First, we run a case of two turbines aligned with the flow and the upstream turbine is yawed by 25o. Figure 8 shows the

streamwise velocity profiles for a FLORIS simulation with the curled wake model and the Gaussian model from the Bastankhah

and Porté-Agel (2016) model. We observe that both models agree very well in terms of power predictions. However, we also

observe that, in the curled wake model, the second turbine is affected by the curled wake of the first turbine. It was observed
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Figure 6. Comparison of streamwise velocity contours for the proposed model (bottom) with large-eddy simulations of a wind turbine inside

the atmospheric boundary layer (top).
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Figure 7. Plot across a line at hub height for a large-eddy simulation using a neutral atmospheric boundary layer simulation of a turbine in

20o yaw using an actuator line model and the curled wake model.

by Fleming et al. (2017), that the curled wake mechanism does affect the wake of the second turbine, but current yaw steering

models are not able to take this effect into account.

Now, we present results for three turbines aligned with the upstream turbine yawed 25o. The curled wake model predicts

deflections up to the third turbine’s wake. This approach addresses previous concerns about models not being able to capture

wake deflection from downstream turbines (Fleming et al., 2017). We notice that the power predictions from the curled wake5

overpredict results from LES. This outcome is expected because the vortices resulting from curl do not decay as they travel
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(a) Gaussian Model (b) Curled Wake Model

Figure 8. FLORIS simulation of two aligned wind turbines yawing the first turbine 25o.

(a) Gaussian Model (b) Curled Wake Model

Figure 9. FLORIS simulation of three aligned wind turbines yawing the first turbine 25o.

downstream. Table 1 shows a comparison between the performance of the Gaussian and curled wake models and simulations

performed in SOWFA. The curled wake model provides improvements in predicting power gains for more than two turbines in

a row. This outcome is because the vortices from the first turbine are propagated downstream. However, because the vortices

do not decay in time, the power may be overpredicted.

Model Gaussian Curl SOWFA

Two-turbine power gain 4.2% 4.3% 5.3%

Three-turbine power gain 4.9% 13.4% 9.2%

Run time 0.05 s 0.5 s 2 days
Table 1. Power percentage improvements for the case with and without steering for the Gaussian model, curled wake model, and SOWFA.

13

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-57
Manuscript under review for journal Wind Energ. Sci.
Discussion started: 7 August 2018
c© Author(s) 2018. CC BY 4.0 License.



7 Possible Improvements for the Model

The key differences between the model and simulations can be summarized as follows:

1. The vortices caused by the curl effect in the model do not change their position and do not decay. In reality, these vortices

induce motion on each other and are advected by the free-stream flow, which may have a lateral component.

2. The turbulence model does not take into account the wind turbine wake. It can only take into account the turbulence5

from the atmospheric boundary layer background flow. This is why the wake decays faster in the large-eddy simulations

compared to the model.

3. The vortices in the model do not decay with downstream distance. In reality, vortices decay because of the radial diffusion

of tangential momentum.

4. The model does not take into account all the nonlinear interactions present in the simulation. For this reason, the model10

is only able to capture the behavior of the larger scales, and hence, not all the details of the flow (such as the deformation

of the vortices) can be captured.

The model can be further improved by taking some of these factors into account. However, the present model is able to capture

the main dynamics of the curled wake with a reduced computational cost. Further improvements are part of future work.

8 Conclusions15

A new model has been proposed to study the aerodynamics of the curled wake. The model solves a linearized version of

the Navier-Stokes momentum equation with the curl effect added as a collection of vortices with an elliptic distribution shed

from the rotor plane. The model has the ability to include several features of the wake including effects due to yaw (‘curl’),

wake rotation, a boundary layer profile, and turbulence modeling. The model has been implemented and tested to reproduce

curled wake profiles. Good agreement is observed when comparing the model to large-eddy simulations of flow past a yawed20

turbine using an actuator disk/line model. The model was tested into the FLORIS framework. Good agreement was observed

in predicting power extraction by yawing the first turbine in a row of two and three turbines. We observe that the effects of

the vortices shed by a yawed turbine propagate for downstream distances longer than the separation between two turbines.

This means that a yawed turbine can be used to redirect, not only its own wake, but the wake of other downstream turbines

as well. Also, we note that the shed vortices allow for spanwise velocity components, which are vital when considering wake25

redirection and wind farm controls. The vortices generated are not limited to only yawing, as they can also be used for tilt and

combinations of tilt and yaw. This work sets a foundation for a simplified wake steering model to be used in a more general

wind farm control-oriented framework.
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